Wednesday, 17 May 2017

Exponentielle Gleitende Mittlere Signalverarbeitung

Ich habe eine Reihe von Daten und eine Messung an jedem dieser Termine. Id wie zu berechnen einen exponentiellen gleitenden Durchschnitt für jeden der Termine. Weiß jemand, wie dies zu tun Im neu zu python. Es scheint nicht, dass Durchschnittswerte in die Standard-Python-Bibliothek, die mich als ein wenig seltsam schlägt gebaut werden. Vielleicht Im nicht auf der Suche nach der richtigen Stelle. Also, angesichts der folgenden Code, wie könnte ich berechnen die bewegten gewichteten Durchschnitt der IQ-Punkte für Kalendertermine (theres vermutlich eine bessere Art und Weise, die Daten zu strukturieren, würde jeder Rat geschätzt werden) Ask Jan 28 09 at 18:01 My python is a Etwas rostig (jedermann kann fühlen frei, diesen Code zu redigieren, um Korrekturen vorzunehmen, wenn Ive die Syntax irgendwie verwirrte), aber hier geht. Diese Funktion bewegt sich von dem Ende der Liste an den Anfang rückwärts, wobei der exponentielle gleitende Durchschnitt für jeden Wert durch Rückwärtsarbeiten berechnet wird, bis der Gewichtungskoeffizient für ein Element kleiner als der gegebene Wert ist. Am Ende der Funktion kehrt es die Werte um, bevor die Liste zurückgegeben wird (so dass sie in der richtigen Reihenfolge für den Aufrufer liegen). (SEITE HINWEIS: wenn ich eine andere Sprache als Python verwendet, erstellen Id eine vollständige Größe leere Array zuerst und dann füllen sie rückwärts-Reihenfolge, so dass ich wouldnt haben, um es am Ende umzukehren. Aber ich glaube nicht, können Sie erklären Eine große leere Array in python. And in Python-Listen, Anhängen ist viel weniger teuer als vorangestellt, weshalb ich baute die Liste in umgekehrter Reihenfolge. Korrigieren Sie mich, wenn Im falsch.) Das Alpha-Argument ist der Zerfallsfaktor auf jeder Iteration. Zum Beispiel, wenn Sie ein Alpha von 0,5 verwendet haben, würde der heutige gleitende Durchschnittswert aus den folgenden gewichteten Werten bestehen: Natürlich, wenn Sie eine riesige Palette von Werten erhalten haben, werden die Werte von zehn oder fünfzehn Tagen nicht viel dazu beitragen Heute gewichteter Durchschnitt. Mit dem Argument epsilon können Sie einen Grenzwert festlegen, unterhalb dessen Sie nicht mehr auf alte Werte achten (da ihr Beitrag zum heutigen Wert unbedeutend ist). Youd rufen die Funktion so etwas wie folgt auf: Ich weiß nicht, Python, aber für die Mittelung Teil, meinst du ein exponentiell abklingendes Tiefpassfilter des Formulars, wo Alpha-dttau, dt der Zeitstep des Filters , Tau die Zeitkonstante des Filters (die variable-timestep Form von diesem ist wie folgt, nur Clip dttau nicht mehr als 1,0) Wenn Sie etwas wie ein Datum filtern möchten, stellen Sie sicher, dass Sie in eine Gleitkommazahl konvertieren Wie von Sekunden seit 1. Januar 1970. antwortete Jan 28 09 am 18:10 Ich fand das oben Code-Snippet von Earino ziemlich nützlich - aber ich brauchte etwas, das kontinuierlich glatt einen Strom von Werten könnte - so dass ich es umgestaltet: und ich benutze Es wie folgt: (wobei Pin. read () erzeugt den nächsten Wert Id wie zu konsumieren). Antwortete am 12. Februar 14 um 20:35 Im immer Berechnen EMAs mit Pandas: Hier ist ein Beispiel, wie es zu tun: Mehr infos über Pandas EWMA: beantwortet Oct 04 15 am 12:42 Don39t neuere Versionen von Pandas haben neue und bessere Funktionen. Ndash Cristian Ciupitu Mai 11 16 at 14:10 Beachten Sie, dass im Gegensatz zu ihrer Kalkulationstabelle, ich nicht berechnen die SMA, und ich nicht warten, um die EMA nach 10 Proben zu generieren. Dies bedeutet, meine Werte unterscheiden sich geringfügig, aber wenn Sie es Diagramm, es folgt genau nach 10 Proben. Während der ersten 10 Samples ist die EMA I berech - nungsgemäß geglättet. Updated 12. März 2013 Was sind RC Filtering und Exponential Averaging und wie unterscheiden sie sich? Die Antwort auf den zweiten Teil der Frage ist, dass sie der gleiche Prozess sind Ein Elektronik-Hintergrund dann RC Filtering (oder RC-Glättung) ist der übliche Ausdruck. Auf der anderen Seite hat ein Ansatz, der auf Zeitreihenstatistik basiert, den Namen Exponential Averaging oder den vollen Namen Exponential Weighted Moving Average. Dies wird auch als EWMA oder EMA bezeichnet. Ein wesentlicher Vorteil des Verfahrens ist die Einfachheit der Formel für die Berechnung der nächsten Ausgabe. Es benötigt einen Bruchteil der vorherigen Ausgabe und einen Minus dieser Fraktion mal der Stromeingabe. Algebraisch zum Zeitpunkt k ist die geglättete Ausgabe y k gegeben durch Wie später gezeigt, hebt diese einfache Formel die jüngsten Ereignisse hervor, glättet Hochfrequenzschwankungen und zeigt langfristige Trends. Es gibt zwei Formen der exponentiellen Mittelungsgleichung, die eine oben und eine Variante Both sind richtig. Siehe die Hinweise am Ende des Artikels für weitere Details. In dieser Diskussion werden wir nur die Gleichung (1) verwenden. Die obige Formel wird manchmal in der begrenzten Weise geschrieben. Wie ist diese Formel abgeleitet und was ist ihre Interpretation Ein wichtiger Punkt ist, wie wir wählen. Um dies zu untersuchen, ist ein RC-Tiefpassfilter zu betrachten. Jetzt ist ein RC-Tiefpassfilter einfach ein Serienwiderstand R und ein Parallelkondensator C, wie unten dargestellt. Die Zeitreihengleichung für diese Schaltung ist Das Produkt RC hat Zeiteinheiten und wird als Zeitkonstante T bezeichnet. Für die Schaltung. Angenommen wir repräsentieren die obige Gleichung in ihrer digitalen Form für eine Zeitreihe, die alle h Sekunden dauert. Wir haben Dies ist genau die gleiche Form wie die vorhergehende Gleichung. Vergleicht man die beiden Beziehungen für a, die sich auf die sehr einfache Beziehung verringert, ergibt sich die Wahl von N, um welche Zeitkonstante wir uns entschieden haben. Nun kann Gleichung (1) als Tiefpassfilter erkannt werden, und die Zeitkonstante bezeichnet das Verhalten des Filters. Um die Bedeutung der Zeitkonstanten zu sehen, müssen wir die Frequenzcharakteristik dieses Tiefpass-RC-Filters betrachten. In seiner allgemeinen Form ist dies in E-Modul und Phase-Form haben wir, wo der Phasenwinkel ist. Die Frequenz wird als nominale Grenzfrequenz bezeichnet. Physikalisch kann gezeigt werden, daß bei dieser Frequenz die Leistung im Signal um die Hälfte reduziert wurde und die Amplitude um den Faktor verringert ist. In dB ist diese Frequenz, wo die Amplitude um 3dB reduziert wurde. Wenn die Zeitkonstante T zunimmt, nimmt die Grenzfrequenz ab, und wir wenden den Daten mehr Glättung zu, dh wir eliminieren die höheren Frequenzen. Es ist wichtig zu beachten, dass der Frequenzgang in Bogenmaß angegeben ist. Das ist es ist ein Faktor der beteiligt. Wenn beispielsweise eine Zeitkonstante von 5 Sekunden gewählt wird, ergibt sich eine effektive Grenzfrequenz von. Eine beliebte Verwendung von RC-Glättung ist die Simulation der Wirkung eines Meters, wie er in einem Schallpegelmesser verwendet wird. Diese werden typischerweise durch ihre Zeitkonstante wie beispielsweise 1 Sekunde für S-Typen und 0,125 Sekunden für F-Typen typisiert. Für diese beiden Fälle liegen die effektiven Grenzfrequenzen bei 0,16 Hz bzw. 1,27 Hz. Eigentlich ist es nicht die Zeitkonstante, die wir normalerweise wählen wollen, sondern jene Perioden, die wir einschließen möchten. Angenommen, wir haben ein Signal, wo wir Merkmale mit einer P zweiten Periode einschließen möchten. Nun ist eine Periode P eine Frequenz. Dann können wir eine Zeitkonstante T wählen. Allerdings wissen wir, dass wir etwa 30 der Ausgabe (-3dB) verloren haben. Die Wahl einer Zeitkonstante, die genau den Perioden entspricht, die wir beibehalten wollen, ist nicht das beste Schema. Es ist normalerweise besser, eine etwas höhere Grenzfrequenz zu wählen, sagen wir. Die Zeitkonstante ist dann die in der Praxis ähnelt. Dies verringert den Verlust auf etwa 15 bei dieser Periodizität. In der Praxis also, um Ereignisse mit einer Periodizität von oder größer zu halten, dann wählen Sie eine Zeitkonstante von. Dies beinhaltet die Auswirkungen der Periodizität von bis zu etwa. Zum Beispiel, wenn wir die Auswirkungen der Ereignisse, die mit sagen, eine 8-Sekunden-Periode (0,125 Hz), dann wählen Sie eine Zeitkonstante von 0,8 Sekunden. Dies ergibt eine Grenzfrequenz von ungefähr 0,2 Hz, so daß unsere 8-Sekunden-Periode im Hauptdurchlaßband des Filters gut ist. Wenn wir die Daten mit 20 timessecond (h 0,05) abtasten, dann ist der Wert von N (0,80,05) 16 und. Dies gibt einen Einblick in die Einstellung. Grundsätzlich für eine bekannte Abtastrate bezeichnet er die Mittelungsperiode und wählt aus, welche Hochfrequenzschwankungen ignoriert werden. Mit Blick auf die Erweiterung des Algorithmus können wir sehen, dass es die neuesten Werte begünstigt, und auch, warum es als exponentielle Gewichtung bezeichnet wird. Wir haben Ersatz für y k-1 gibt Wiederholen dieses Prozesses mehrmals führt zu, weil im Bereich dann klar die Begriffe nach rechts kleiner werden und sich wie eine abklingende Exponential verhalten. Das ist die aktuelle Ausgabe ist auf die jüngeren Ereignisse voreingenommen, aber je größer wir wählen, desto weniger Bias. Zusammenfassend lässt sich feststellen, dass die einfache Formel die jüngsten Ereignisse hervorhebt, die die Ereignisse mit hoher Frequenz (kurzzeitig) glätten, zeigt langfristige Trends Anhang 1 8211 Alternative Formen der Gleichung Achtung Es gibt zwei Formen der exponentiellen Mittelungsgleichung, die in der Literatur vorkommen. Beide sind richtig und gleichwertig. Die erste Form, wie oben gezeigt, ist (A1) Die alternative Form ist 8230 (A2) Beachten Sie die Verwendung von in der ersten Gleichung und in der zweiten Gleichung. In beiden Gleichungen sind Werte zwischen Null und Eins. Früher wurde definiert als Jetzt wählen, um zu definieren Also die alternative Form der exponentiellen Mittelung Gleichung ist In physikalischen Begriffen bedeutet es, dass die Wahl der Form verwendet wird, hängt davon ab, wie man denken, entweder nehmen als die Rückkopplung Fraktion Gleichung (A1) oder Als den Bruchteil der Eingangsgleichung (A2). Die erste Form ist etwas weniger umständlich, wenn sie die RC-Filterbeziehung zeigt, und führt zu einem einfacheren Verständnis in Filterausdrücken. Chief Signal Processing Analyst bei Prosig Dr. Colin Mercer ist Chief Signal Processing Analyst bei Prosig und verantwortlich für die Signalverarbeitung und deren Anwendungen. Er war früher am Institute of Sound and Vibration Research (ISVR) an der Southampton University, wo er das Data Analysis Center gründete. Er ist ein Chartered Ingenieur und ein Fellow der British Computer Society. Ich denke, dass Sie den 8216p8217 zum Symbol für pi ändern möchten. Marco, vielen Dank für den Hinweis. Ich denke, dies ist einer unserer älteren Artikel, die von einem alten Textverarbeitungsdokument übertragen wurde. Offensichtlich, der Herausgeber (mir) nicht zu erkennen, dass die pi nicht korrekt transkribiert wurde. Sie wird in Kürze behoben. Es ist ein sehr guter Artikel Erklärung über die exponentielle Mittelung Ich glaube, es gibt einen Fehler in der Formel für T. Es sollte T h (N-1), nicht T (N-1) h sein. Mike, danke für das Spotting. Ich habe gerade zurück zu Dr Mercer8217s ursprünglichen technischen Hinweis in unserem Archiv und es scheint, dass es Fehler bei der Übertragung der Gleichungen auf den Blog. Wir korrigieren die Post. Danke, dass Sie uns wissen Danke Danke danken Ihnen. Sie können 100 DSP-Texte lesen, ohne etwas zu sagen, dass ein exponentieller Mittelungsfilter das Äquivalent eines R-C-Filters ist. Hmm, haben Sie die Gleichung für einen EMA-Filter richtig ist es nicht Yk aXk (1-a) Yk-1 anstatt Yk aYk-1 (1-a) Xk Alan, Beide Formen der Gleichung erscheinen in der Literatur, und Beide Formen sind korrekt, wie ich unten zeigen werde. Der Punkt, den Sie machen, ist wichtig, weil die Verwendung der alternativen Form bedeutet, dass die physikalische Beziehung mit einem RC-Filter weniger offensichtlich ist, darüber hinaus ist die Interpretation der Bedeutung eines in dem Artikel gezeigt nicht geeignet für die alternative Form. Zuerst zeigen wir, dass beide Formen korrekt sind. Die Form der Gleichung, die ich verwendet habe und die alternative Form, die in vielen Texten erscheint, ist Anmerkung in der oben Ich habe Latex 1latex in der ersten Gleichung und Latex 2latex in der zweiten Gleichung verwendet. Die Gleichheit beider Formen der Gleichung wird mathematisch unterhalb der einfachen Schritte auf einmal gezeigt. Was ist nicht das gleiche ist der Wert für Latex-Latex in jeder Gleichung verwendet. In beiden Formen ist Latex-Latex ein Wert zwischen Null und Eins. Zuerst wird die Gleichung (1) beschrieben, die Latexlatex durch Latexlatex ersetzt. Dies ergibt Latexyk y (1 - beta) xklatex 8230 (1A) Jetzt definieren wir Latexbeta (1 - 2) Latex und so haben wir auch Latex 2 (1 - beta) Latex. Setzt man diese in die Gleichung (1A) ein, so erhält man die Latexyk (1 - 2) y 2xklatex 8230 (1B) und schließlich die Reorganisation. Diese Gleichung ist identisch mit der in Gleichung (2) angegebenen alternativen Form. Setzen Sie einfacher Latex 2 (1 - 1) Latex. In physikalischer Hinsicht bedeutet das, dass die Wahl der verwendeten Form davon abhängt, wie man annehmen will, ob man Latexalphalatex als Rückkopplungsfraktionsgleichung (1) oder als Bruchteil der Eingangsgleichung (2) annimmt. Wie oben erwähnt, habe ich die erste Form verwendet, da sie etwas weniger mühsam ist, die RC-Filterbeziehung zu zeigen, und führt zu einem einfacheren Verständnis in Filtertermen. Allerdings Auslassung der oben ist, meiner Meinung nach, ein Mangel in dem Artikel als andere Menschen könnten eine falsche Schlussfolgerung, so dass eine überarbeitete Version wird bald erscheinen. Ich habe immer darüber nachgedacht, danke für die Beschreibung so klar. Ich denke, ein anderer Grund die erste Formulierung ist schön ist Alpha-Maps zu 8216smoothness8217: eine höhere Auswahl an Alpha bedeutet eine 8216more smooth8217 Ausgabe. Michael Vielen Dank für die Beobachtung 8211 Ich werde den Artikel etwas auf diese Zeilen hinzufügen, da es immer besser in meiner Sicht auf physische Aspekte beziehen. Dr Mercer, Ausgezeichneter Artikel, danke. Ich habe eine Frage bezüglich der Zeitkonstante, wenn sie mit einem RMS-Detektor wie in einem Schallpegelmesser verwendet wird, auf den Sie in dem Artikel verweisen. Wenn ich Ihre Gleichungen verwenden, um einen exponentiellen Filter mit Zeitkonstanten 125ms zu modellieren und ein Eingangsschrittsignal zu verwenden, bekomme ich tatsächlich einen Ausgang, der nach 125ms 63,2 des Endwertes ist. Jedoch wenn ich das Eingangssignal quadriere und dieses durch den Filter stelle, sehe ich, daß ich die Zeitkonstante verdoppeln muß, damit das Signal 63.2 seines Endwertes in 125ms erreicht. Können Sie mir mitteilen, ob dies erwartet wird. Danke vielmals. Ian Ian, Wenn Sie ein Signal wie ein Sinus-Welle dann im Grunde Sie verdoppeln die Häufigkeit ihrer grundlegenden sowie die Einführung von vielen anderen Frequenzen. Da die Frequenz in Wirklichkeit verdoppelt worden ist, wird sie um 8216 um einen grßeren Betrag durch das Tiefpaßfilter verringert. Infolgedessen dauert es länger, die gleiche Amplitude zu erreichen. Die Quadrierung Operation ist eine nicht lineare Operation, so glaube ich nicht, dass es immer doppelt genau in allen Fällen, aber es wird dazu neigen, zu verdoppeln, wenn wir eine dominante niedrige Frequenz haben. Beachten Sie auch, dass die Differenz eines quadrierten Signals das Doppelte des Differentials des 8220un-squared8221 Signals ist. Ich vermute, Sie könnten versuchen, eine Form der mittleren quadratischen Glättung, die vollkommen in Ordnung und gültig ist zu bekommen. Es könnte besser sein, den Filter anzuwenden und dann quadratisch, wie Sie die effektive Cutoff kennen. Aber wenn alles, was Sie haben, ist das quadrierte Signal dann mit einem Faktor von 2, um Ihre Filter-Alpha-Wert ändern wird etwa erhalten Sie zurück auf die ursprüngliche Cut Off-Frequenz, oder setzen Sie es ein wenig einfacher definieren Sie Ihre Cutoff-Frequenz auf das Doppelte des Originals. Vielen Dank für Ihre Antwort Dr. Mercer. Meine Frage war wirklich versuchen, zu bekommen, was tatsächlich in einem rms Detektor eines Schallpegelmessgerät getan. Wenn die Zeitkonstante für 8216fast8217 (125ms) eingestellt ist, hätte ich gedacht, dass Sie intuitiv erwarten würden, dass ein sinusförmiges Eingangssignal einen Ausgang von 63.2 seines Endwertes nach 125ms erzeugt, aber da das Signal quadriert wird, bevor es an die 8216mean8217 gelangt Erkennung, es dauert doppelt so lange wie Sie erklärt haben. Das Hauptziel des Artikels ist es, die Äquivalenz der RC-Filterung und exponentielle Mittelung zu zeigen. Wenn wir die Integrationszeit äquivalent zu einem echten rechteckigen Integrator diskutieren, dann sind Sie richtig, dass es einen Faktor von zwei beteiligt ist. Grundsätzlich, wenn wir einen echten rechtwinkligen Integrator haben, der für Ti Sekunden integriert, ist die äquivalente RC-Integatorzeit, um dasselbe Ergebnis zu erzielen, 2RC Sekunden. Ti unterscheidet sich von der RC 8216zeit constant8217 T, die RC ist. Also, wenn wir eine 8216Fast8217 Zeitkonstante von 125 ms haben, das ist RC 125 msec, dann ist das äquivalent zu einer echten Integrationszeit von 250 msec Vielen Dank für den Artikel, es war sehr hilfreich. Es gibt einige neuere Arbeiten in der Neurowissenschaften, die eine Kombination von EMA-Filtern (kurzfensternde EMA 8211 langfächerige EMA) als Bandpassfilter für die Echtzeit-Signalanalyse verwenden. Ich möchte sie anwenden, aber ich kämpfe mit den Fenstergrößen, die verschiedene Arbeitsgruppen verwendet haben, und ihre Entsprechung mit der Grenzfrequenz. Let8217s sagen, ich möchte alle Frequenzen unter 0,5 Hz (aprox) zu halten, und dass ich 10 Proben zweiten zu erwerben. Das bedeutet, dass fp 0.5Hz P 2s T P100.2 h 1fs0.1 Die Fenstergröße I sollte mit N3 verwendet werden. Ist diese Argumentation richtig Vor der Beantwortung Ihrer Frage muss ich kommentieren die Verwendung von zwei Hochpass-Filter, um ein Bandpassfilter zu bilden. Vermutlich funktionieren sie als zwei getrennte Ströme, so ein Ergebnis ist der Inhalt von sagen latexf Latex zu halben Sample-Rate und der andere ist der Inhalt von sagen, latexf Latex auf halbe Sample-Rate. Wenn alles, was getan wird, die Differenz der mittleren quadratischen Ebenen als Angabe der Leistung in der Band aus latexf Latex zu latexf Latex dann kann es sinnvoll sein, wenn die beiden abgeschnittenen Frequenzen sind ausreichend weit auseinander, aber ich erwarte, dass die Menschen mit dieser Technik Versuchen, ein schmaleres Bandfilter zu simulieren. Aus meiner Sicht wäre das für eine ernsthafte Arbeit unzuverlässig und würde eine Quelle der Besorgnis sein. Nur als Referenz ist ein Bandpassfilter eine Kombination eines Niederfrequenz-Hochpassfilters, um die niedrigen Frequenzen zu entfernen, und ein Hochfrequenz-Tiefpaßfilter, um die hohen Frequenzen zu entfernen. Es gibt natürlich eine Tiefpaßform eines RC-Filters und damit eine entsprechende EMA. Vielleicht aber mein Urteil ist überkritisch, ohne zu wissen, alle Fakten So könnten Sie bitte senden Sie mir einige Verweise auf die Studien, die Sie erwähnt, so kann ich Kritik als angemessen. Vielleicht verwenden sie einen Tiefpass sowie ein Hochpassfilter. Ich denke, es ist am besten, die grundlegende Gleichung T (N-1) h verwenden, um Ihre tatsächliche Frage, wie zu bestimmen N für eine bestimmte Ziel-Cut-off-Frequenz. Die Diskussion über die Perioden zielte darauf ab, den Menschen ein Gefühl dafür zu geben, was vor sich ging. Also bitte die Ableitung unten. Wir haben die Beziehungen latexT (N-1) hlatex und latexT12 Latex, wobei latexfclatex die nominale Grenzfrequenz ist und h die Zeit zwischen den Proben ist, klar latexh 1 Latex, wobei latexfslatex die Abtastrate in samplessec ist. Nachfolgend wird die Umlagerung von T (N-1) h in einer geeigneten Form, um die Grenzfrequenz, Latexfclatex und die Probenrate, Latexfslatex, einzuschließen. Also mit latexfc 0.5Hzlatex und latexfs 10latex samplessec, so dass Latex (fcfs) 0.05latex gibt Also der nächste Integer-Wert ist 4. Re-Arrangieren der oben haben wir Also mit N4 haben wir latexfc 0.5307 Hzlatex. Unter Verwendung von N3 ergibt sich ein Latexfclatex von 0,318 Hz. Hinweis mit N1 haben wir eine vollständige Kopie ohne Filterung. Dokumentation Dieses Beispiel zeigt, wie mit gleitenden mittleren Filter und Resampling zu verwenden, um die Wirkung von periodischen Komponenten der Tageszeit auf stündliche Temperaturablesungen zu isolieren, sowie unerwünschte Zeilenrauschen aus einem entfernen Offene Spannungsmessung. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters, so dass jeder Punkt gleich gewichtet ist und 124 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiteres gemeinsames Filter folgt der Binomialexpansion von (12,12) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomialfilter zu finden, falten Sie 12 12 mit sich selbst und konvergieren dann iterativ den Ausgang mit 12 12 eine vorgeschriebene Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wähle dein Land


No comments:

Post a Comment